:mod:`fedlab_core.models.pnasnet` ================================= .. py:module:: fedlab_core.models.pnasnet .. autoapi-nested-parse:: PNASNet in PyTorch. Paper: Progressive Neural Architecture Search Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: fedlab_core.models.pnasnet.SepConv fedlab_core.models.pnasnet.CellA fedlab_core.models.pnasnet.CellB fedlab_core.models.pnasnet.PNASNet Functions ~~~~~~~~~ .. autoapisummary:: fedlab_core.models.pnasnet.PNASNetA fedlab_core.models.pnasnet.PNASNetB fedlab_core.models.pnasnet.test .. class:: SepConv(in_planes, out_planes, kernel_size, stride) Bases: :class:`torch.nn.Module` Separable Convolution. .. method:: forward(self, x) .. class:: CellA(in_planes, out_planes, stride=1) Bases: :class:`torch.nn.Module` .. method:: forward(self, x) .. class:: CellB(in_planes, out_planes, stride=1) Bases: :class:`torch.nn.Module` .. method:: forward(self, x) .. class:: PNASNet(cell_type, num_cells, num_planes) Bases: :class:`torch.nn.Module` .. method:: _make_layer(self, planes, num_cells) .. method:: _downsample(self, planes) .. method:: forward(self, x) .. function:: PNASNetA() .. function:: PNASNetB() .. function:: test()