:mod:`fedlab_core.models.resnet` ================================ .. py:module:: fedlab_core.models.resnet .. autoapi-nested-parse:: ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: fedlab_core.models.resnet.BasicBlock fedlab_core.models.resnet.Bottleneck fedlab_core.models.resnet.ResNet Functions ~~~~~~~~~ .. autoapisummary:: fedlab_core.models.resnet.ResNet18 fedlab_core.models.resnet.ResNet34 fedlab_core.models.resnet.ResNet50 fedlab_core.models.resnet.ResNet101 fedlab_core.models.resnet.ResNet152 fedlab_core.models.resnet.test .. class:: BasicBlock(in_planes, planes, stride=1, use_batchnorm=True) Bases: :class:`torch.nn.Module` .. attribute:: expansion :annotation: = 1 .. method:: forward(self, x) .. class:: Bottleneck(in_planes, planes, stride=1, use_batchnorm=True) Bases: :class:`torch.nn.Module` .. attribute:: expansion :annotation: = 4 .. method:: forward(self, x) .. class:: ResNet(block, num_blocks, num_classes=10, use_batchnorm=True) Bases: :class:`torch.nn.Module` .. method:: _make_layer(self, block, planes, num_blocks, stride) .. method:: forward(self, x) .. function:: ResNet18(use_batchnorm=True) .. function:: ResNet34(use_batchnorm=True) .. function:: ResNet50(use_batchnorm=True) .. function:: ResNet101(use_batchnorm=True) .. function:: ResNet152(use_batchnorm=True) .. function:: test()