:mod:`fedlab_core.models.resnext` ================================= .. py:module:: fedlab_core.models.resnext .. autoapi-nested-parse:: ResNeXt in PyTorch. See the paper "Aggregated Residual Transformations for Deep Neural Networks" for more details. Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: fedlab_core.models.resnext.Block fedlab_core.models.resnext.ResNeXt Functions ~~~~~~~~~ .. autoapisummary:: fedlab_core.models.resnext.ResNeXt29_2x64d fedlab_core.models.resnext.ResNeXt29_4x64d fedlab_core.models.resnext.ResNeXt29_8x64d fedlab_core.models.resnext.ResNeXt29_32x4d fedlab_core.models.resnext.test_resnext .. class:: Block(in_planes, cardinality=32, bottleneck_width=4, stride=1) Bases: :class:`torch.nn.Module` Grouped convolution block. .. attribute:: expansion :annotation: = 2 .. method:: forward(self, x) .. class:: ResNeXt(num_blocks, cardinality, bottleneck_width, num_classes=10) Bases: :class:`torch.nn.Module` .. method:: _make_layer(self, num_blocks, stride) .. method:: forward(self, x) .. function:: ResNeXt29_2x64d() .. function:: ResNeXt29_4x64d() .. function:: ResNeXt29_8x64d() .. function:: ResNeXt29_32x4d() .. function:: test_resnext()