:mod:`fedlab_core.models.shufflenet` ==================================== .. py:module:: fedlab_core.models.shufflenet .. autoapi-nested-parse:: ShuffleNet in PyTorch. See the paper "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices" for more details. Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: fedlab_core.models.shufflenet.ShuffleBlock fedlab_core.models.shufflenet.Bottleneck fedlab_core.models.shufflenet.ShuffleNet Functions ~~~~~~~~~ .. autoapisummary:: fedlab_core.models.shufflenet.ShuffleNetG2 fedlab_core.models.shufflenet.ShuffleNetG3 fedlab_core.models.shufflenet.test .. class:: ShuffleBlock(groups) Bases: :class:`torch.nn.Module` .. method:: forward(self, x) Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W] .. class:: Bottleneck(in_planes, out_planes, stride, groups) Bases: :class:`torch.nn.Module` .. method:: forward(self, x) .. class:: ShuffleNet(cfg) Bases: :class:`torch.nn.Module` .. method:: _make_layer(self, out_planes, num_blocks, groups) .. method:: forward(self, x) .. function:: ShuffleNetG2() .. function:: ShuffleNetG3() .. function:: test()