fedlab_core.models.mobilenetv2

MobileNetV2 in PyTorch.

See the paper “Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation” for more details.

Module Contents

Classes

Block

expand + depthwise + pointwise

MobileNetV2

Functions

test()

class fedlab_core.models.mobilenetv2.Block(in_planes, out_planes, expansion, stride)

Bases: torch.nn.Module

expand + depthwise + pointwise

forward(self, x)
class fedlab_core.models.mobilenetv2.MobileNetV2(num_classes=10)

Bases: torch.nn.Module

cfg = [[1, 16, 1, 1], [6, 24, 2, 1], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1]]
_make_layers(self, in_planes)
forward(self, x)
fedlab_core.models.mobilenetv2.test()