fedlab_core.models.resnext¶
ResNeXt in PyTorch.
See the paper “Aggregated Residual Transformations for Deep Neural Networks” for more details.
Module Contents¶
Functions¶
-
class
fedlab_core.models.resnext.Block(in_planes, cardinality=32, bottleneck_width=4, stride=1)¶ Bases:
torch.nn.ModuleGrouped convolution block.
-
expansion= 2¶
-
forward(self, x)¶
-
-
class
fedlab_core.models.resnext.ResNeXt(num_blocks, cardinality, bottleneck_width, num_classes=10)¶ Bases:
torch.nn.Module-
_make_layer(self, num_blocks, stride)¶
-
forward(self, x)¶
-
-
fedlab_core.models.resnext.ResNeXt29_2x64d()¶
-
fedlab_core.models.resnext.ResNeXt29_4x64d()¶
-
fedlab_core.models.resnext.ResNeXt29_8x64d()¶
-
fedlab_core.models.resnext.ResNeXt29_32x4d()¶
-
fedlab_core.models.resnext.test_resnext()¶