fedlab_core.models.shufflenet¶
ShuffleNet in PyTorch.
See the paper “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices” for more details.
Module Contents¶
Classes¶
Functions¶
|
-
class
fedlab_core.models.shufflenet.ShuffleBlock(groups)¶ Bases:
torch.nn.Module-
forward(self, x)¶ Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]
-
-
class
fedlab_core.models.shufflenet.Bottleneck(in_planes, out_planes, stride, groups)¶ Bases:
torch.nn.Module-
forward(self, x)¶
-
-
class
fedlab_core.models.shufflenet.ShuffleNet(cfg)¶ Bases:
torch.nn.Module-
_make_layer(self, out_planes, num_blocks, groups)¶
-
forward(self, x)¶
-
-
fedlab_core.models.shufflenet.ShuffleNetG2()¶
-
fedlab_core.models.shufflenet.ShuffleNetG3()¶
-
fedlab_core.models.shufflenet.test()¶