fedlab_core.models.resnet¶
ResNet in PyTorch.
For Pre-activation ResNet, see ‘preact_resnet.py’.
Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Module Contents¶
Classes¶
Functions¶
|
|
|
|
|
|
|
|
|
|
|
-
class
fedlab_core.models.resnet.BasicBlock(in_planes, planes, stride=1, use_batchnorm=True)¶ Bases:
torch.nn.Module-
expansion= 1¶
-
forward(self, x)¶
-
-
class
fedlab_core.models.resnet.Bottleneck(in_planes, planes, stride=1, use_batchnorm=True)¶ Bases:
torch.nn.Module-
expansion= 4¶
-
forward(self, x)¶
-
-
class
fedlab_core.models.resnet.ResNet(block, num_blocks, num_classes=10, use_batchnorm=True)¶ Bases:
torch.nn.Module-
_make_layer(self, block, planes, num_blocks, stride)¶
-
forward(self, x)¶
-
-
fedlab_core.models.resnet.ResNet18(use_batchnorm=True)¶
-
fedlab_core.models.resnet.ResNet34(use_batchnorm=True)¶
-
fedlab_core.models.resnet.ResNet50(use_batchnorm=True)¶
-
fedlab_core.models.resnet.ResNet101(use_batchnorm=True)¶
-
fedlab_core.models.resnet.ResNet152(use_batchnorm=True)¶
-
fedlab_core.models.resnet.test()¶