fedlab_core.models.resnet
¶
ResNet in PyTorch.
For Pre-activation ResNet, see ‘preact_resnet.py’.
Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
Module Contents¶
Classes¶
Functions¶
|
|
|
|
|
|
|
|
|
|
|
-
class
fedlab_core.models.resnet.
BasicBlock
(in_planes, planes, stride=1, use_batchnorm=True)¶ Bases:
torch.nn.Module
-
expansion
= 1¶
-
forward
(self, x)¶
-
-
class
fedlab_core.models.resnet.
Bottleneck
(in_planes, planes, stride=1, use_batchnorm=True)¶ Bases:
torch.nn.Module
-
expansion
= 4¶
-
forward
(self, x)¶
-
-
class
fedlab_core.models.resnet.
ResNet
(block, num_blocks, num_classes=10, use_batchnorm=True)¶ Bases:
torch.nn.Module
-
_make_layer
(self, block, planes, num_blocks, stride)¶
-
forward
(self, x)¶
-
-
fedlab_core.models.resnet.
ResNet18
(use_batchnorm=True)¶
-
fedlab_core.models.resnet.
ResNet34
(use_batchnorm=True)¶
-
fedlab_core.models.resnet.
ResNet50
(use_batchnorm=True)¶
-
fedlab_core.models.resnet.
ResNet101
(use_batchnorm=True)¶
-
fedlab_core.models.resnet.
ResNet152
(use_batchnorm=True)¶
-
fedlab_core.models.resnet.
test
()¶