fedlab_core.models.pnasnet¶
PNASNet in PyTorch.
Paper: Progressive Neural Architecture Search
Module Contents¶
Functions¶
-
class
fedlab_core.models.pnasnet.SepConv(in_planes, out_planes, kernel_size, stride)¶ Bases:
torch.nn.ModuleSeparable Convolution.
-
forward(self, x)¶
-
-
class
fedlab_core.models.pnasnet.CellA(in_planes, out_planes, stride=1)¶ Bases:
torch.nn.Module-
forward(self, x)¶
-
-
class
fedlab_core.models.pnasnet.CellB(in_planes, out_planes, stride=1)¶ Bases:
torch.nn.Module-
forward(self, x)¶
-
-
class
fedlab_core.models.pnasnet.PNASNet(cell_type, num_cells, num_planes)¶ Bases:
torch.nn.Module-
_make_layer(self, planes, num_cells)¶
-
_downsample(self, planes)¶
-
forward(self, x)¶
-
-
fedlab_core.models.pnasnet.PNASNetA()¶
-
fedlab_core.models.pnasnet.PNASNetB()¶
-
fedlab_core.models.pnasnet.test()¶