fedlab_core.models.pnasnet
¶
PNASNet in PyTorch.
Paper: Progressive Neural Architecture Search
Module Contents¶
Functions¶
-
class
fedlab_core.models.pnasnet.
SepConv
(in_planes, out_planes, kernel_size, stride)¶ Bases:
torch.nn.Module
Separable Convolution.
-
forward
(self, x)¶
-
-
class
fedlab_core.models.pnasnet.
CellA
(in_planes, out_planes, stride=1)¶ Bases:
torch.nn.Module
-
forward
(self, x)¶
-
-
class
fedlab_core.models.pnasnet.
CellB
(in_planes, out_planes, stride=1)¶ Bases:
torch.nn.Module
-
forward
(self, x)¶
-
-
class
fedlab_core.models.pnasnet.
PNASNet
(cell_type, num_cells, num_planes)¶ Bases:
torch.nn.Module
-
_make_layer
(self, planes, num_cells)¶
-
_downsample
(self, planes)¶
-
forward
(self, x)¶
-
-
fedlab_core.models.pnasnet.
PNASNetA
()¶
-
fedlab_core.models.pnasnet.
PNASNetB
()¶
-
fedlab_core.models.pnasnet.
test
()¶